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Abstract

An analytical method for achieving specific wave modulations from the device
designed in Polarization-Independent, Multifunctional All-Fiber Comb Filter
Using Variable Ratio Coupler-Based Mach–Zehnder Interferometer will be de-
rived from the Jones calculus representing the device in question. This will,
as a consequence, show the mathematical reasoning for many characteristics of
the device such as the polarization-independence, and the ability to achieve the
effects of a comb filter.

1 Introduction

The purpose of the device outlined in Polarization-Independent, Multifunctional
All-Fiber Comb Filter Using Variable Ratio Coupler-Based Mach–Zehnder In-
terferometer is to create a tunable comb filter. The optical system of the comb
filter device proposed as represented by Jones calculus is

Eout = C1FC2RC2FC1Ein (1.1)

where

Ci =

[√
1− ci j

√
ci

j
√
ci

√
1− ci

]
, F =

[
ejφ 0
0 1

]
, R =

[
0 1
1 0

]
where ci is the coupling ratio for coupler Ci, j is the imaginary unit

√
−1, and φ

is the phase difference between the two sections of the F component caused by
the difference in length. The phase difference φ can be expressed as a complete
phase of the wavelength, φ = 2πλ.
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Figure 1.1: Device diagram

This device is tunable because the coupling ratios c1 and c2 can be changed to
create a desired output.

Assuming a standard input where port 1, Ein 1, is used and port 2, Ein 2 is not

Ein =

[
1
0

]
then Eout is calculated

Eout 1 = 2j(e2jφ
√
c2(1− c2)(1−c1)+ejφ

√
c1(1− c1)(1−2c2)+(−1)

√
c2(1− c2)c1

(1.2)

Eout 2 = 2(−1)(e2jφ + 1)
√
c1c2(1− c2)(1− c1) + ejφ

√
(1− 2c1)(1− 2c2) (1.3)

with transmission functions, T = |Eout|2,

T1 out = 4c1
2c2(1− c2)

+ 4c2(1− c1)2(1− c2)

+ 4c1(1− c1)(1− 2c2)2

− 8c1c2(1− c1)(1− c2) cos(2φ)

+ 8(1− 2c2)(1− 2c1)
√
c1c2(1− c1)(1− c2) cos(φ)

(1.4)

T2 out = 8c1c2(1− c1)(1− c2)

+ (1− 2c1)2(1− 2c2)2

− 8(1− 2c1)(1− 2c2)
√
c1c2(1− c1)(1− c2) cos(φ)

+ 8c1c2(1− c1)(1− c2) cos(2φ)

(1.5)

2 Analysis

For practical uses, only the output from port 1 will be considered. Looking at
(1.4), it is clear that the first 3 terms

A = 4c1
2c2(1− c2) + 4c2(1− c1)2(1− c2) + 4c1(1− c1)(1− 2c2)2 (2.1)
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will result only in a change of amplitude on the output wave, while the two
oscillating terms

O1 = −8c1c2(1− c1)(1− c2) cos(2φ) (2.2)

O2 = 8(1− 2c2)(1− 2c1)
√
c1c2(1− c1)(1− c2) cos(φ) (2.3)

will be the 2 waves that the comb filter superimposes. This effect is clearly dis-
played when plotting the terms individually against their transmission function
(1.4).

Figure 2.1: Plot of transmission function against each of it’s components.
c1 = 0.20, c2 = 0.21

•(1.4) •(2.1) •(2.2) •(2.3)

The shape of the transmission curve is thus determined by the magnitude of
(2.2) and (2.3). To control the amplitudes of (2.2) and (2.3), it is important to
make note of when their oscillation amplitudes are 0 and maximized. Solving
for (2.2) having no amplitude

0 = −8c1c2(1− c1)(1− c2) cos(2φ)

⇒ c1 or c2 = {0, 0.5, 1} (2.4)

and (2.2) having a maximized amplitude

0 =
d

dc1

d

dc2
− 8c1c2(1− c1)(1− c2) cos(2φ)

⇒ c1 and c2 = {2−
√

2

4
,

2 +
√

2

4
} ≈ {0.854, 0.146} (2.5)

For (2.3) having no amplitude
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0 = 8(1− 2c2)(1− 2c1)
√
c1c2(1− c1)(1− c2)

⇒ c1 or c2 = {0, 1} (2.6)

and (2.3) having a maximized amplitude

0 =
d

dc1

d

dc2
8(1− 2c2)(1− 2c1)

√
c1c2(1− c1)(1− c2)

⇒ c1 and c2 = 0.5 (2.7)

These results have a few interesting consequences. When c1 or c2 = 0.5, (2.2)
will be 0 and the superimposing of (2.3) onto it will cause the transmission
function to produce a wave with the amplitude of (2.3) at φ, only negative.
(2.3) can also be maximized since the parameters for cancelling (2.2) will still
be valid, meaning the transmission function can have an amplitude that is as
large as (2.3) can be. Of course any transmission amplitude can be achieved
since only c1 or c2 has to be 0.5 for the reflection effect to occur, meaning (2.3)
can be set to any amplitude using whichever c1 or c2 6= 0.5.

Figure 2.2: Plot of transmission function reflecting a maximized (2.3).
c1 = 0.50, c2 = 0.50

•(1.4) •(2.1) •(2.2) •(2.3)

The transmission can also be turned off simply by setting c1 and c2 = 0 or 1.
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Figure 2.3: Plot of no transmission.
c1 = 1, c2 = 0

This effect is actually just setting the transmission to the amplitude value found
by (2.1). This means that the transmission can be set to any constant by
changing c1 or c2 while leaving the other at 1. The variable causing (2.2) and
(2.3) to be 0 can be either c1 or c2 = 1 set to 0 or 1.

Figure 2.4: Transmission with a constant value.
c1 = 1, c2 = 0.96

•(1.4) •(2.1) •(2.2) •(2.3)

In the above situation, the desired value, DC, can be found by solving (2.1) for
c2.
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DC = 4c1
2c2(1− c2) + 4c2(1− c1)2(1− c2) + 4c1(1− c1)(1− 2c2)2

= 4(1)2c2(1− c2) + 4c2(1− 1)2(1− c2) + 4c1(1− 1)(1− 2c2)2

= −4c2(c2 − 1)

⇒ c2 =
1±
√

1−DC
2

(2.8)

Applying (2.8) for an amplitude of 0.15 as shown in figure 2.4 returns a solution
of

c2 =
1±
√

1− 0.15

2
≈ {0.04, 0.96}.

To produce a flat top wave, the difference in amplitude of (2.2) and (2.3) needs
to be constant over some interval of φ. When they are superimposed, the
subtraction of their values will be the same over the interval, making a constant
output for the duration of the interval. If their difference is constant over an
interval, their rate of change will be equal over the interval

d

dφ
O1 =

d

dφ
O2

−16c1c2(1−c1)(1−c2) sin(2φ) = 8(1−2c1)(1−2c2)
√
c1c2(1− c1)(1− c2) sin(φ)

Solving for c2 and setting φ = 0 finds that

⇒ c2 =
1

2
±
√
−c1(c1 − 1). (2.9)

This shows that for any given c1, the needed c2 to produce a flat top transmission
can be found.
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Figure 2.5: Transmission producing flat top waveform.
c1 = 0.30, c2 = 0.04 (Left), c2 = 0.96 (Right)

•(1.4) •(2.1) •(2.2) •(2.3)

Calculating c2 as found in (2.5) using (2.9) given c1 = 0.30.

c2 =
1

2
±
√
−0.30(0.30− 1) ≈ {0.042, 0.958}

A transmission flat top with the greatest amplitude can be found by minimizing
a coupler ratio in A, like c2, and solving for c1, then finding c2 with (2.9).

0 =
d

dc2
4c1

2c2(1− c2) + 4c2(1− c1)2(1− c2) + 4c1(1− c1)(1− 2c2)2

⇒ c1 =
3±
√

3

6
≈ {0.789, 0.211}

c2 =
1

2
±
√
{0.789, 0.211}({0.789, 0.211} − 1) ≈ {0.908, 0.092}
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Figure 2.6: Transmission with flat top with largest amplitude.
c1 = 0.79, c2 = 0.91 (Left), c2 = 0.09 (Right)

•(1.4) •(2.1) •(2.2) •(2.3)

3 Conclusion

The key method of analysis is to break the transmission wave equation into
separate oscillation and non oscillation terms, then determining the calculus
based transformation required for the desired output. Using this approach var-
ious transmission forms were achieved such as flattop transmission. Equation
(2.9) was derived to determine any c1, c2 permutation that achieves a flattop
transmission, and later it was used with a minimization of a coupler component
to determine a maximum amplitude flattop transmission.
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